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Abstract Abnormal expression of cyclin-dependent kinase
2 (CDK2)/cyclin-E is detected in colorectal, ovarian, breast
and prostate cancers. The study of CDK2 with a bound
inhibitor revealed CDK2 as a potential therapeutic target
for several proliferative diseases. Several highly selective
inhibitors of CDK2 are currently undergoing clinical trials,
but possibilities remain for the identification and develop-
ment of novel and improved inhibitors. For example, in
silico targeting of ATP-competitive inhibitors of CDKs is
of special interest. A series of 3,5-diaminoindazoles was
studied using molecular docking and comparative field anal-
yses. We used post-docking short time molecular dynamics
(MD) simulation to account for receptor flexibility. The
three types of structures, i.e., the highest energy, lowest
energy and the structure most resembling the X-ray structure
(three complexes) were identified for all ligands. QM/MM
energy calculations were performed using a DFT b3lyp/6–
31 g* and MM OPLS-2005 force field. Conceptual DFT
properties such as the interaction energy of ligand to protein,
global hardness (η), HOMO density, electrostatic potential,
and electron density were calculated and related to inhibito-
ry activity. CoMFA and CoMSIA were used to account for
steric and electrostatic interactions. The results of this study
provide insight into the bioactive conformation, interactions
involved, and the effect of different drug fragments over
different biological activities.
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Introduction

The cyclin-dependent kinases (CDKs) are a family of
serine-threonine protein kinases that govern the initiation,
progression, and completion of the cell cycle. These kinases
are responsible for controlling cell cycle progression, oper-
ating at the transition from G2 to M and G1 to S phases.
Progression through S phase is regulated by a complex set
of mechanisms, including the presence of activating cyclins,
regulatory phosphorylation and endogenous CDK inhibitors
at checkpoints [1]. Individual CDKs can phosphorylate dis-
tinct substrates at different phases of the cell cycle so they
have been classified as G1 (CDK4 and CDK6-D cyclins,
CDK2- cyclin E), S (CDK2-cyclin A, CDK1-cyclin A), and
G2/M (CDK1-cyclin B) phase-specific CDKs. The assem-
bly of a CDK with its corresponding cyclin yields a partially
active complex. Full activity is achieved after phosphor-
ylation of the CDK at the conserved threonine residue
proximal to the ATP-binding cleft (Thr 172 in CDK4/6,
Thr 160 in CDK2, and Thr 161 in Cdc2) [2–7]. As-
sembly of the cyclin leads to conformational changes in
the T-loop, making it more accessible for phosphoryla-
tion. Phosphorylation causes a further conformational
change in the T-loop, making the catalytic cleft fully
accessible to ATP. In addition to the kinase activity,
phosphorylation is also known to enhance the stability
of some cyclin/CDs [7–9]. CDK2 complexes with cyclin
E and A are required for S phase (DNA synthesis)
progression of the cell cycle [10–16].

CDK inhibitors decrease the kinase activity of the cyclin/
CDK complex by blocking the transition from G1 to S phase
[17]. A study of the active site of CDK2 with a bound
inhibitor showed CDK2 to act as a potential therapeutic
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target for cancer [18]. Inhibitors with a high selectivity for
CDK2, such as roscovitine/CYC-202 [19] and BMS-
387032/SNS-032 [19], are currently undergoing phase I
and II clinical trials.

Here, in order to understand the conformational com-
patibility of novel ligands with their receptor, we used
in silico molecular dynamic (MD) simulations. Charge
perturbation and energy exchange within the complex
were analyzed using density functional theory (DFT)
[20]. Computational time was reduced using a hybrid
QM/MM [21, 22] method in which the ligand was
defined by DFT (b3lyp/6–31g*) while the rest of the
protein and the solvent molecules were defined using
molecular mechanics (OPLS force field) [23]. The con-
ceptual DFT properties yielded promising results for
molecular recognition [24–27]; consequently, we used
DFT properties such as interaction energy, global hard-
ness (η) and frontier orbital energies to correlate with
variations in inhibitory activity for a series of com-
pounds. The molecular fields and molecular similarity
effects on biological activity were also considered using
CoMFA/CoMSIA [28–30].

Materials and methods

Dataset

A series of 3,5-diaminoindazoles known to have CDK
inhibitory activities [31] were considered for this study.
The in vitro CDK inhibitory activities were converted
into corresponding pIC50 (−logIC50) values. The set of
28 CDK inhibitors was divided into a training set (22
compounds) and a test set (6 compounds) as reported
in Table 1. Selection of the molecules for the training
and test sets was based on the fact that test set mol-
ecules must have a range of biological activity and
typical chemical structures similar to those of the
training set.

Construction

The bioactive conformation of the most active molecule
(compound 14) was docked using Glide [32]. The
docked conformer was used as template to construct
3D models of all other molecules using the maestro
interface [33]. Minimum energy conformers were
obtained using random search algorithms and further
minimized using OPLS force field with a distance-
dependent dielectric and the Powell conjugate gradient
algorithm. The convergence criterion was 0.05 kcal mol−1 Å−1.
The partial atomic charges were assigned using OPLS force
field.

Molecular docking

All inhibitors were minimized using the OPLS-2005 force
field using Macro Model [23]. The crystal structure of
CDK2 (PDB 1YKR) was used as the receptor for this study
[34]. The Glide molecular docking program was used for
docking and calculation of binding affinities. During the
docking process, Glide performs an initial complete system-
atic search for conformational, orientational and positional
space for the docked ligand and eliminates unwanted con-
formations using scoring, followed by energy minimization.
Details of the algorithm are available in the GLIDE docu-
mentation. Briefly, GLIDE proprietary conformational ex-
pansion and exhaustive search of the binding site
produce a multitude of ligand poses, which undergo an
initial refinement, energy minimization on a pre-
computed grid, and a final scoring and ranking. GLIDE
uses proprietary scoring functions that are variations of
the Chem Score 43 empirical scoring function and the
OPLS-2005 force field to compute van der Waals and
electrostatic grids for the receptor. The final ligand
binding poses were ranked according to a computed
Emodel score that encompasses the grid score, the pro-
prietary Glide score, and the internal energy strain. The
inhibitors were docked into the receptor site using
GLIDE SP (standard precision) mode.

Pose selections

A total of 100 docked conformers for each ligand was
reported. The best pose for each ligand was selected using
the docked score and the total energy as a first criterion,
while similarity and orientation to the co-crystallized ligand
(Fig. 1) was used as a secondary criterion.

Molecular dynamics

The best-docked pose for each ligand was solvated using a
water box [simple point charge (SPC)] of 55 Å (Fig. 2). The
ligand and residues in the surrounding 5 Å (namely Glu8,
Lys9, Ile10, Gly11, Glu12, Gly13, Lys20, Val 64, Phe80,
Glu81, Phe82, Leu83, His84, Gln85, Asp86, Lys129,
Pro130, Gln131, Asn132, Ala144, and Asp145) were
allowed to move while other residues and water molecules
were kept frozen. A short term 10 ns MD simulation was
performed using Macro model as implemented in the Schrö-
dinger suite [33] .

The MD run was performed using OPLS2005 potential
with force field based charges and PRCG algorithms. The
maximum 500 iterations were considered with gradient con-
vergence criterion and a convergence threshold of 0.05.
Non-bonded cutoff values of 8 Å for van der Waals interac-
tion and 20 Å for the electrostatic interaction were set for
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formally charged atoms. All bonds were allowed to SHAKE
and the simulation temperature was 310 K with a 1.5-fs time
steps. A total of 100 snapshots were recorded during the
simulation. The lowest energy conformer of all the

complexes was reported as set-1 (Table 2), the highest
energy conformer of all the complexes was extracted and
reported as set-2 (Table 3), while the docked conformers of

Table 1 Structures of
diaminoindazole-based cyclin-
dependent kinase 2 (CDK2)
inhibitors with their observed
activities. MITZDO 2-Methyl-
isothiazolidine-1,1-dioxide

No. R1 R2 IC50 (μM) pIC50

1 Phenyl- NO2 2.000 5.70

2 Phenyl- C2H5NH 0.500 6.30

3 Phenyl- (C2H5)2N 0.200 6.70

4 Phenyl- (n-C3H7)2N 1.800 5.74

5 Phenyl- CO(CH2)3N 0.170 6.77

6 Phenyl- CO(CH2)4N 7.100 5.15

7 Phenyl- COCH2NHCON 2.000 5.70

8 Phenyl- SO2(CH2)3N 0.040 7.44

9 3-F-C6H4- MITZDO 0.010 8.00

10 4-F-C6H4- MITZDO 0.020 7.70

11 2-Cl-C6H4- MITZDO 0.024 7.62

12 3-Cl-C6H4- MITZDO 0.010 8.00

13 4-Cl-C6H4- MITZDO 0.010 8.00

14 3-Br-C6H4- MITZDO 0.007 8.15

15 4-Br-C6H4- MITZDO 0.007 8.15

16 3-CH3-C6H4- MITZDO 0.010 8.00

17 4-CH3-C6H4- MITZDO 0.007 8.15

18 4-HO-C6H4- MITZDO 0.009 8.05

19 4-NH2-C6H4- MITZDO 0.016 7.80

20 4-(CH3)2N-C6H4- MITZDO 0.010 8.00

21 4-(C2H5)2 N-C6H4- MITZDO 0.040 7.40

22 4-(1-Piperidinyl)-C6H4- MITZDO 0.030 7.52

23 4-CH3S-C6H4- MITZDO 0.010 8.00

24 4-CH3SO2-C6H4- MITZDO 0.022 7.66

25 1-Naphthyl MITZDO 0.020 7.70

26 2-Naphthyl MITZDO 0.009 8.05

27 4-Biphenyl- MITZDO 0.014 7.85

28 4-(4-Pyridyl)-C6H4- MITZDO 0.030 7.52

Fig. 1 Binding mode of best inhibitor (compound 14) within protein
cyclin-dependent kinase 2 (CDK2) (1YKR)

Fig. 2 Protein ligand complex with in solvent [simple point charge
(SPC)] water box
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all the complexes, which are more similar to co-crystal
ligand, were reported as set-3 (Table 4).

QM/MM methods

All three sets of complexes were subjected to energy calcu-
lations. Since determining a DFT description of the whole
system would be quite a time-consuming process, ultimately
we have used a hybrid QM/MM [21, 22] potential. The ligand
energy in bound form was obtained by QM/MM(complex) cal-
culations while the ligand energy in unbound form was
obtained by QM/MM(ligand) calculations.

QM/MM (complex)

In QM/MM(complex) analysis we have treated the ligand
only with DFT (b3lyp/6–31g* basis set) while the pro-
tein and the solvent were described using molecular
mechanics (MM) (OPLS2005). The maximum iteration

for the geometry optimization was set at 1,000 and a
SCF convergence criterion was set as ultrafine (5*10−5

Eh) for energy and density matrix convergence (5*10−6

RMSD) with a maximum of 1,000 cycles. The conver-
gence accelerator DIIS was used. MM minimization was
performed using a maximum 1,000 cycle for criterion of
energy convergence (1*10−5 Eh) and density matrix
convergence (5*10−6 RMSD) with conjugate gradient
algorithms.

QM/MM (Ligand)

For QM/MM(Ligand) calculations, we used the same con-
former of all ligands as those used for QM/MM(complex)

analysis in the three geometrical schemes. The ligand was
solvated in a 10 Å cubic SPC water box. The energy of the
ligand was obtained by QM/MM (Ligand) calculation and in
this run the ligand was defined by DFT (b3lyp/6–31g* basis
set) while the solvent was described using MM (OPLS2005).

Table 2 Quantum mechanics/
molecular mechanics (QM/
MM)-based descriptor values for
low energy conformers with ob-
served and predicted activities

aOPLS derived energy of protein
with respect to different ligand
bInteraction energy of ligand
with protein obtained from Eq. 3
cHardness of ligand in bound
form obtained from Eq. 4
dPredicted activities of low ener-
gy conformer based model PAL

eTest set
fOutlier compounds

No. EMM
a Δ EQM

b ηc pIC50 PAL
d

1 −55.50789036 0.021094661 0.065365 5.7 7.00

3 −55.65706385 0.040450298 0.07379 6.7 6.34

5 −55.55458129 −5.776841306 0.080005 6.77 6.78

6 −55.41128247 0.036459648 0.078825 5.15 7.77

7 −55.50754096 0.004850376 0.06496 5.7 6.68

8 −55.50357472 0.048338896 0.0788 7.44 7.37

9 −55.43188863 0.026376635 0.074495 8 7.35

12 −55.48993643 −0.009927298 0.0765 8 7.41

13 −55.33217952 0.004521439 0.07395 8 7.79

14 −55.41555693 0.041063169 0.07352 8.15 7.40

15 −55.35129669 −0.004590724 0.074655 8.15 7.70

16 −55.48053026 0.05813479 0.080715 8 7.46

17 −55.42325394 0.01137732 0.08067 8.15 7.72

18 −55.35630045 0.016113403 0.080495 8.05 7.98

19 −55.48616271 −0.012024003 0.082375 7.8 7.41

21 −55.27979196 0.011689252 0.0688 7.4 8.01

23 −55.33726428 −0.010936453 0.06276 8 7.42

24 −55.41983404 0.037401372 0.077445 7.66 7.72

25 −55.41526493 0.017669493 0.06715 7.7 7.40

26 −55.3944685 0.028671866 0.077345 8.05 7.85

2e −55.53339163 0.02238272 0.069735 6.3 6.91

4e −55.64322945 0.016654694 0.071375 5.74 6.43

10e −55.52611792 7.73E-05 0.074375 7.7 6.91

20e −55.36785671 0.033404153 0.06291 8 7.29

27e −55.32627516 0.009946506 0.08254 7.85 8.12

28e −55.13410796 0.020755156 0.06396 7.52 8.35

11f −55.23576776 0.01344789 0.07541 7.62 8.51

22f −55.22110249 0.023160125 0.077355 7.52 8.60
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The remaining protocol for the calculation was same as for the
QM/MM (Complex) calculation.

The interaction energy of ligands was obtained using the
Eqs. 1–3:

EQM MM= ¼ Eelectronic þ Enr þ EMM ð1Þ

EQm ¼ Eelectronic þ Enr ¼ EQM MM= � EMM ð2Þ

ΔEint ¼ EQM Ligandð Þ � EQM complexð Þ ð3Þ
The energy of the protein (EMM) was obtained using

Eq. 4 and the necessary parameters were obtained from
QM/MM (complex) calculations.

EMM ¼ EQM MM= � EQM ð4Þ

To calculate conceptual DFT properties, we used QM/
MM (complex) calculations.

Recently, the absolute hardness η has been defined by
Parr et al. [35]

η ¼ 1 2= dμ dN=ð ÞvðrÞ ¼ 1 2= d2E dN=
2

� �
vðrÞ

ð5Þ

Where E is the total energy, N is the number of electrons of
the chemical species, and v(r) is the external potential. The
operational definition of global hardness can be obtained by
finite difference approximation of Eq. 5, which is Eq. 6.

η ¼ IP � EAð Þ 2= ð6Þ
IP and EA are ionization potential and electron affinity,

respectively. According to Koopman’s theorem [36], the IP
is simply the Eigen value of HOMO with a change of sign,
and EA is the Eigen value of LUMO with a change of sign;
hence, Eq. 5 may be written as Eq. 6.

η ¼ "LUMO � "HOMOð Þ 2= ð7Þ
All QM/MM calculations were performed using the

QSite [37] interface, which uses the Jaguar [38] program

Table 3 QM/MM based de-
scriptor values for high energy
conformers with observed and
predicted activities

aOPLS derived energy of protein
with respect to different ligand
bInteraction energy of ligand
with protein obtained from Eq. 3
cHardness of ligand in bound
form obtained from Eq. 4
dPredicted activities of low ener-
gy conformer based model PAH

eTest set
fOutlier compounds

No. EMM
a ΔEQM

b ηc pIC50 PAH
d

1 −56.03219542 0.02484531 0.05474 5.7 6.00

3 −55.7860436 0.023842184 0.068735 6.7 7.66

5 −56.00750116 0.033494581 0.083365 6.77 6.66

6 −55.99435123 0.053270452 0.086485 5.15 6.83

7 −55.99645323 −0.004876906 0.074565 5.7 6.71

8 −55.78383163 0.007644438 0.07702 7.44 7.99

11 −55.873386 0.019417065 0.07577 7.62 7.45

13 −55.83709168 −0.009902669 0.072445 8 7.61

14 −55.78824761 0.031585984 0.07619 8.15 7.80

15 −55.70805502 0.003591277 0.07399 8.15 8.22

16 −55.99509813 0.019063065 0.076635 8 6.78

17 −55.91120207 0.018921105 0.081665 8.15 7.25

18 −55.86749483 0.021439927 0.06958 8.05 7.24

19 −55.86856646 0.025539618 0.07076 7.8 7.17

21 −55.69019055 0.021874827 0.04958 7.4 7.76

22 −55.70576911 0.027909342 0.05784 7.52 7.79

23 −55.73596818 0.013895716 0.064895 8 7.78

24 −55.804791 −0.004034764 0.07766 7.66 7.96

25 −55.72632488 0.018016239 0.05989 7.7 7.76

26 −55.82167311 0.05185236 0.066915 8.05 7.29

2e −56.03256443 0.034175577 0.07265 6.3 6.34

4e −55.90720429 0.008849036 0.06788 5.74 7.11

10e −55.95438914 0.054034798 0.076845 7.7 6.82

20e −55.86612195 0.041772775 0.059145 8 6.89

27e −55.6219439 0.03877626 0.076425 7.85 8.61

28e −55.68058444 0.020135738 0.071165 7.52 8.23

9f −55.55819389 0.020292876 0.07909 8 9.06

12f −56.05361854 0.035299203 0.074465 8 6.17
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for DFT treatment, and the impact [39] program for MM
treatment.

CoMFA and CoMSIA

For CoMFA and CoMSIA, the general protocol was the
same as described in our earlier publications [26, 27,
40–42]. The molecules were aligned using the same three
different geometrical methods as those obtained from MD
simulation. The aligned training set of molecules was placed
in a 3D grid box such that the entire set was included in the
box. Steric and electrostatic (Coulomb potential) field ener-
gies were calculated using sp3 carbon as a probe atom. The
energies were truncated to ±30 kcal mol-1. The CoMFA
fields generated automatically were scaled by the CoMFA-
STD method in SYBYL. CoMSIAwas performed using the
same lattice box as that used for CoMFA calculations, with a
grid spacing of 2.0 Å, employing a C + 1 probe atom with a
radius of 1.0 Å as implemented in SYBYL [43].

Regressive validations

The partial least-square (PLS) [44–46] statistical method was
used for all 3D QSAR analyses. Column filtering was set as
2.0 kcal mol-1 to speed up the analysis and reduce the noise.
The CoMFA and CoMSIA descriptors were used as indepen-
dent variables, and pIC50 values were used as dependent
variables in PLS regression analyses to derive 3D QSAR
models using standard implementation in the SYBYL pack-
age. The biological activities were evaluated by the leave-one-
out (LOO) cross validation method. The cross-validated cor-
relation coefficient, q2 and predictive R squared (r2pred) were

calculated using methods described elsewhere [41].

Results

The rules governing the molecular recognition process be-
tween a ligand and its receptor (protein) are often

Table 4 The QM/MM based
descriptor values for docked
conformers with observed and
predicted activities

aOPLS derived energy of protein
with respect to different ligand
bInteraction energy of ligand
with protein obtained from Eq. 3
cHardness of ligand in bound
form obtained from Eq. 4
dPredicted activities of low ener-
gy conformer based model PAD

eTest set
fOutlier compounds

No. EMM
a ΔEQM

b ηc pIC50 PAD
d

1 −55.60842521 0.02527115 0.067305 5.7 6.36

3 −55.65776985 −967.2545362 0.07777 6.7 6.33

5 −55.62515104 −894.9768511 0.082375 6.77 6.76

6 −55.64627598 −408.9643839 0.08233 5.15 6.50

7 −55.63669169 −358.4452157 0.08265 5.7 6.65

8 −55.60198456 −40.09025454 0.077575 7.44 7.23

9 −55.52006852 59.49052784 0.07887 8 8.35

11 −55.55555745 403.6693173 0.077025 7.62 7.81

12 −55.53452603 323.5891775 0.079155 8 8.23

13 −55.56605364 244.7096449 0.077355 8 7.66

15 −55.51824386 −425.6893018 0.073525 8.15 7.60

16 −55.55141023 −548.498792 0.079715 8 7.90

17 −55.57266704 −114.2262027 0.078635 8.15 7.64

18 −55.57257448 −78.62767702 0.075165 8.05 7.64

19 −55.57164308 −176.799348 0.0679 7.8 6.91

21 −55.37268301 802.534616 0.053575 7.4 8.32

22 −55.38691372 761.1857041 0.051225 7.52 8.04

23 −55.51480692 868.0346797 0.06141 8 7.09

25 −55.5217513 549.9793277 0.067495 7.7 7.65

26 −55.50171368 499.9062873 0.06077 8.05 7.21

2e −55.61312312 −686.5161136 0.072305 6.3 6.33

4e −55.61633728 −889.068495 0.071135 5.74 6.17

10e −55.54399697 23.77803157 0.07733 7.7 8.07

20e −55.48670561 −112.8019644 0.049945 8 6.59

27e −55.41365031 232.6660816 0.071105 7.85 9.18

28e −55.28698166 149.6615516 0.06111 7.52 10.13

14f −55.44536721 −239.969153 0.078515 8.15 9.32

24f −55.45699239 1,023.933292 0.07684 7.66 9.25

884 J Mol Model (2013) 19:879–891



challenging, although hundreds of experimental and com-
putational studies have attempted to quantify them. The
available empirical techniques are still insufficient for quan-
titative descriptions of such interactions. Conformational
sampling using molecular docking [47, 48] is often chal-
lenged for accuracy. In this context, energy functions and
solvent effects can give more insight into binding phenom-
ena. DFT [49] and/or MP2 [50] methods are precise enough
to account for such interactions but these calculations re-
main limited only up to small molecular systems because of
the high computational demand. Recently, hybrid potential
methods such as QM/MM [21, 22] have been introduced,
which can calculate efficiently the properties of macromo-
lecules and can also help with in silico drug discovery [51].

The present study used molecular docking with all com-
plexes solvated using a 55 Å (SPC) water box. A 10 ns MD
simulation was performed using protocols described in the
Materials and methods section. Afterwards, low energy,
high energy, and docked conformers for all complexes were
identified and defined as set-1, set-2 and set-3, respectively.
QM/MM calculations were performed to calculate the ener-
gy and charge density values for all ligands within the
protein in its three different conformations.

Energy map

In principal, molecules tend to occupy their lowest energy
state. Here, we calculated the total energy of all the ligands
in three different conformations using QM/MM methods,
followed by application of the equations described above.
The molecules were sorted into the lowest and highest
energy sets using the total energy (QM/MM) of the com-
plex, while docked conformers were taken directly from the
molecular docking information, which is the same as the
starting structure for MD simulations. Interestingly, we
found that, in all cases, the ligand QM energy was minimum
in the docked conformation. This indicates that the ligand
achieves maximum stability in the docked conformation and
this is a good indication to set an additional docking score.
As a consequence, we calculated the interaction energy
ΔEint using QM/MM (complex) and QM/MM (Ligand) calcu-
lations as described in Materials and methods. The values of
interaction energyΔEint are reported under Tables 2, 3, 4 for
sets 1–3, respectively.

Quantum chemical properties and activity relationships

The interaction energies of ligands to the receptor (ΔEint)
were calculated using QM/MM techniques as described in
Eqs. 1–3. The frontier orbital energies (εHOMO, εLUMO) and
charge densities were used to evaluate important conceptual
DFT-based parameters such as global hardness (η) [52]
electronegativity (χ) [53], chemical potential (μ) [54] and

electrophilicity index (ω) [55], etc. These important descrip-
tors were related as a function of variation of biological
activities using multiple linear regression analysis. The corre-
lation matrix was developed using a collinear cutoff of 0.5,
and all linearly related descriptor were removed physically
from the analyses with only the best and most significant
models presented here. For the first set, we derived a model
PAL (predicted activity for low energy conformer) that
includes the interaction energy of the ligand to the protein
ΔEint, global hardness (η) and receptor energy EMM.

Model PAL

Variable Coefficient SE T

Intercept 2.4937e+02 1.3458e+02 1.8530

EMM 4.4070e+00 2.4308e+00 1.8130

ΔEint 6.3969e−02 1.6712e−01 0.3828

η 3.2338e+01 3.0730e+01 1.0523

SD00.88, R200.22, F01.6, q200.02, RMS07.49

The model has a relationship with biological activities, as
is clear from the correlation coefficient r200.22 for the
training set, but the cross validated correlation coefficient
q2 was too low to be considered significant.

For the second set, we derived a model PAH (predicted
activity for high energy conformer) using the same descrip-
tors as those as for the previous model PAL.

Model PAH

Variable Coefficient SE T

Intercept 2.9570e+02 9.7157e+01 3.0435

EMM 5.1865e+00 1.7481e+00 2.9670

ΔEint −7.1142e+00 1.1905e+01 0.5976

η 2.0829e+01 1.8049e+01 1.1540

SD00.7, R200.38, F03.3, q200.03, RMS00.94

This model has a good relationship, with a value of
correlation coefficient r200.38 for the training set but the
cross-validated correlation coefficient q2 still remains poor.

Finally, we derived a model PAD (predicted activity for
docked conformer). The descriptors were same as for the
previous models. The model PAD showed good correlation
with biological activity. The correlation coefficient r200.50
for the training set and the cross validated correlation coef-
ficient (q2) was 0.26.

Model PAD

Variable Coefficient SE T

Intercept 7.8101e+02 2.3359e+02 3.3435

EMM 1.4021e+01 4.2269e+00 3.3172

ΔEint 5.4140e−05 4.7345e−04 0.1144

η 7.2465e+01 2.6962e+01 2.6877

SD00.7, R200.50, F05.4, q200.26, RMS00.8
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The descriptors that provided a good relationship are
conceptually valid as the interaction energy ΔEint is a
fundamental parameter for the activity. In QM/MM
calculations, the interaction energy was concerned
mainly with the energy of the ligand (QM energy)
and the variation of protein energy with respect to
different ligands, which is considered an important
parameter, was missing. Eventually, the inclusion of
receptor energy (EMM) gave a good relationship with
the variation of activity. According to the maximum
hardness principle [52], the molecule gains maximum
hardness in its most stable form. The noteworthy find-
ing in all cases was that the global hardness had a
positive coefficient, indicating a high hardness value as
a favorable parameter for biological activity, which
means a stable complex will have higher inhibitory
activity.

For these three models, the best statistics (q200.26, r20
0.50) were associated with the docked conformer based
model PAD. The predicted and observed biological activities
for all the models along with the descriptor values are given
in Tables 2, 3, 4.

Comparative three-dimensional analysis

Three-dimensional analyses were performed using the
aforementioned three different geometrical schemes,
namely low energy, high energy and docked conformer,
respectively.

Frontier orbital density map

The electron density distribution is a function of conforma-
tion, which plays an important role in drug receptor inter-
actions. The HOMO density maps drawn for all three
conformers are shown in Fig. 3a–c.

The maps in Fig. 3a and b correspond to the low and
high-energy conformers with high HOMO density around
indazole ring. In the case of the docked conformer
(Fig. 3c), high HOMO density is located around the
phenyl ring with no HOMO density around the sulfur,
oxygen or indazole ring. This map indicates a possible
steric and bulk interaction rather than an electrostatic
interaction around SO2 and the indazole ring. This map
provides a very useful demonstration of the variation of

electron density due to slight conformational changes in
the ligand or its surrounding residues. Such small varia-
tions in conformation effectively perturb the nature of the
resulting interaction.

Electrostatic potential and electron density

The charge and electron density maps for different con-
formers of the most active molecule (compound 14), as
determined by the DFT/MM method, are illustrated in
Fig. 4a–c.

The differences between these three electron density
maps gave a direct indication of charge migration due
to polarization. Therefore, we could determine the
change in the electron density and electrostatic potential
of each inhibitor for different conformations within the
protein. The electron density (cage) and electrostatic
potential (surface) maps for representative structures
are shown in Fig. 4. As we can see in Fig. 4a and c,
the electrostatic potential distribution is similar (bluish
in color) and the potential ranges were set as 43 and
45 kcal mol-1, while the map in Fig. 4b (high energy
conformer) is red in color, which indicates a rather
negative potential; the range was set as 49 kcal mol-1.
The electron density maps were similar in all three
conformations except for the zone between SO2 and
the carbonyl oxygen atom. This particular zone was
most neutral in docked conformation as shown by the
white surface in Fig. 4c. Even though both the oxygen
atoms have lone pair of electrons and the sulfur atom
also has a lone pair of electrons, the low electron
density around these region indicates that their bulk
might contribute to a steric interaction rather than an
electrostatic one.

Molecular alignment

Molecular alignment is a key step in comparative molecular
field analyses (CoMFA). In this study, the molecules were
aligned in each case, using a common sub-structure based
method and the most active molecule (compound 14) was
used as template in its three different conformations (high
energy, docked and low energy) for respective geometrical
schemes. The docked geometry based molecular alignment
is displayed in Fig. 5.

Fig. 3 HOMO density map for
a lowest energy conformer, b
highest energy conformer, c
docked conformer for ligand 14
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Comparative molecular fields analyses

The CoMFA model was developed using the same training
and test sets as those for QM/MM based models. The
molecular charges were assigned using the Gasteiger-
Hückel method. The steric “S”, electrostatic “E” and both
fields together were used to develop three different models
for each geometrical scheme (a total of nine models:
CoMFA1–CoMFA9). Models CoMFA1–CoMFA3 were
based on the low energy conformer; models CoMFA4–
CoMFA6 were based on the high-energy conformer, while
models CoMFA7–CoMFA9 were based on the docked
conformer.

In both the low energy and high energy conformer-based
models, the electrostatic field alone showed significant rela-
tionships (CoMFA2 q200.32 and CoMFA5 q200.31) with
the variation in inhibitory activity. Model 3 (CoMFA3) was
based on both fields having values LOO q200.22 and r20
0.59. Model6 (CoMFA6) was based on both fields having
values LOO q200.23 and r200.55. Similarly the model9
(CoMFA9) was based on both fields having values LOO
q200.50 and r200.71.

Of the three steric field-based models (CoMFA1,
CoMFA4 and CoMFA7) the docked conformer based steric
model (CoMFA7) has the better relationship (q200.49). It is
evident that the docked geometry is important in accounting
for the interactions. In the docked-geometry-based models,

CoMFA9 showed a significant relationship. Even though
this model involves both steric and electrostatic interac-
tions, the electrostatic contribution was observed to be
dominant for the interaction. The model successfully
showed a valid internal predictivity value r2bs ¼ 0:72] and
for predictivity of the six molecules of the test set the
r2predictive value was 0.66. This is more realistic because it

is based on the co-crystallized binding mode, all mole-
cules have nearly the same conformation as the co-crystal
structure, and all have key contact hydrogen bonding
between residues Glu81, Leu83, etc. The statistical sum-
mary of all nine models is presented in Table 5. The
activities predicted by CoMFA are summarized in Table 7.
The trends of observed and predicted activities using
model CoMFA9 are displayed in Fig. 6.

CoMFA maps

The 3D-CoMFA contour map using the best-fit model
CoMFA9 is displayed in Fig. 7 to demonstrate the compar-
ative molecular field effects over compound 14.

In Fig. 7 the green contour indicates the area in
which bulky substations might affect the activity bene-
ficially, and the yellow region is favorable for small
groups. The blue contour (Fig. 7) indicates the region
where a positive group will be helpful for high activity,
while the red zone indicates the region favorable for
negative groups. The green and blue contours were
evident around isothiazolidine, indicating that a bulkier
and/or positive group around these regions will favor
high activity. Yellow contours were evident just near
indazole and around the SO2 group of isothiazolidine,
indicating that a small group will be favored around
these regions for higher activity.

Comparative molecular similarity indices analyses

Comparative molecular similarity indices analyses
(CoMSIA) was conducted in a manner similar to
CoMFA with the protocol described in the Materials
and methods section. CoMSIA was conducted using
steric and electrostatic fields effects separately as well
as jointly for all three geometrical schemes as noted in
Table 6. In the case of the low-energy- and high-energy-

Fig. 4 Electron density (solid
surface) and electrostatics
potential (mesh) density map
for a lowest energy conformer,
b highest energy conformer, c
docked conformer for the
ligand 14

Fig. 5 Docked alignment over co-crystal ligand 14
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based models, the electrostatic field alone is better than
the steric field effect-based models.

The low energy based electrostatic model (CoMSIA2)
has LOO q200.68 while the high energy based electrostatic
model (CoMSIA5) has LOO q200.65. The steric field based
models CoMSIA1 and CoMSIA4 have a poor relationship
with activity, but with the docked geometry based model
there is a significant change; the steric field based model
(CoMSIA7) has q2 0.30 and the model CoMSIA9, which
uses both steric and electrostatic fields effects, has q2 0.60
and a correlation coefficient of r200.86. The X-ray geome-
try based best-fit model CoMSIA9 with the steric and elec-
trostatic field effects, was tested for internal predictive
power ( r2bs ¼ 0:90) and for the test set predictive power of
six compounds ( r2predictive ¼ 0:55 ). The statistical value for

model CoMSIA9 was better among other models, which
indicates the significance of docked geometry to account

for the steric contribution to inhibitory activity. However, in
all three geometrical schemes, the electrostatic contribution
was dominant. The different field combinations and the
statistical summary are reported in Table 6. The predicted
activities using model CoMSIA9 are presented in Table 7
and the trend of observed and predicted activities using
model CoMSIA9 is displayed in Fig. 8.

CoMSIA maps

Like CoMFA, the CoMSIA contour maps were developed
using the docking-based CoMSIA model. The model was
based on steric and electrostatic field effects. Each field
effect is displayed individually in Fig. 9 over compound 14.

The green contours (Fig. 9) indicate the area in which
bulky substitutions might affect the activity beneficially, and
the yellow region is favorable for small groups. The map is
quite similar to the CoMFA steric map as the green and blue
contour appears around isothiazolidine, which indicates that
a bulkier/positive group will be favorable for higher activity.
There is a yellow contour around the phenyl group, which is
directed towards residues Ile10, Gle85 and His84, and these

Table 5 Regression summary of different comparative molecular fields analyses (CoMFA) models. Fields: S Steric, E electrostatic

No. Model Field q2 n r2 SE F r2observed SD r2predicted

Low energy conformer based

1 CoMFA1 S −0.667 3 0.869 0.346 39.727 – – –

2 CoMFA2 E 0.32 1 0.578 0.588 27.397 – – –

3 CoMFA3 0.45S/0.55E 0.22 1 0.59 0.577 29.313 – – –

High energy conformer based

4 CoMFA4 S −0.331 3 0.863 0.353 37.831 – – –

5 CoMFA5 E 0.31 1 0.549 0.608 24.345 – – –

6 CoMFA6 0.44S/0.56E 0.23 1 0.55 0.606 24.719 – – –

Docked conformer based

7 CoMFA7 S 0.49 1 0.753 0.45 61.082 – – –

8 CoMFA8 E 0.46 1 0.672 0.51 40.964 – – –

9 CoMFA9 0.49S/0.51E 0.50 1 0.71 0.49 48.04 0.72 0.11 0.66
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Fig. 6 Trend of observed and predicted activities for the training and
test set using CoMFA based model (CoMFA9)

Fig. 7 CoMFA steric and electrostatic maps based on model9
(CoMFA9)
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residues are all within the 3 Å range, which indicates a
suitable site for a small substituent.

Discussion

In general, stable molecular systems tend to have min-
imum energy. In ligand receptor–interaction studies such
information is needed to analyze the stability of ligands
when present in the complex. According to the maxi-
mum hardness principal [52] the molecule must gain
maximum hardness value for stability. The conceptual
phenomena for these two parameters are illustrated in
Scheme 1.

In our analysis, we noted the minimum energy for the
ligands (EQM) in docked conformation. The positive coeffi-
cient of ΔEint and the hardness indicate that a high hardness
value and high interaction energy favor inhibitory activity
against CDK2.

It is expected that the use of QM methods will keep
growing in all phases of computer-aided drug design and
development. However, extensive sampling of conforma-
tional space and treatment of solution of macromolecules

Table 7 Observed (reference) and predicted activities by CoMFA and
CoMSIA models

No. pIC50 PACOMFA9 Residue PACoMSIA9 Residue

1 5.7 6.1 −0.4 5.8 −0.1

3 6.7 6.19 0.51 6.42 0.28

5 6.77 6.38 0.39 6.06 0.71

6 5.15 6.02 −0.87 5.95 −0.80

7 5.7 6.29 −0.59 5.79 −0.09

8 7.44 7.67 −0.23 7.72 −0.28

9 8 7.71 0.29 8.03 −0.03

11 7.62 7.65 −0.03 7.84 −0.22

12 8 7.75 0.25 7.91 0.09

13 8 7.83 0.17 7.91 0.09

14 8.15 7.75 0.4 7.87 0.28

15 8.15 7.82 0.33 7.86 0.29

16 8 7.82 0.18 7.77 0.23

17 8.15 7.84 0.31 7.73 0.42

18 8.05 7.81 0.24 7.87 0.18

19 7.8 7.8 0 7.81 −0.01

21 7.4 8.03 −0.63 7.76 −0.36

22 7.52 6.9 0.62 7.51 0.01

23 8 8.1 −0.1 7.83 0.17

24 7.66 8.2 −0.54 7.96 −0.30

25 7.7 8.01 −0.31 7.78 −0.08

26 8.05 8.14 −0.09 8.46 −0.41

Test set

2 6.3 6.43 −0.13 6.09 0.21

4 5.74 6.6 −0.86 6.53 −0.79

10 7.7 7.76 −0.06 7.98 −0.28

20 8 7.94 0.06 7.81 0.19

27 7.85 8.11 −0.26 8.47 −0.62

28 7.52 8.11 −0.59 8.46 −0.94

Table 6 Regression summary of
different comparative molecular
similarity indices analyses
(CoMSIA) models

Model Field q2 n r2 SE F r2 observed SD r2predicted

Low conformer based

CoMSIA1 S −0.799 2 0.469 0.677 8.375 – – –

CoMSIA2 E 0.68 2 0.809 0.406 40.334 – – –

CoMSIA3 0.148S/0.852E 0.591 2 0.82 0.388 45.124 – – –

High conformer based

CoMSIA4 S −0.363 2 0.243 0.809 3.046 – – –

CoMSIA5 E 0.65 2 0.798 0.417 37.615 – – –

CoMSIA6 0.11S/0.89E 0.53 2 0.78 0.43 34.57 – – –

Docked conformer based

CoMSIA7 S 0.30 2 0.646 0.553 17.301 – – –

CoMSIA8 E 0.574 2 0.875 0.329 66.315 – – –

CoMSIA9 0.22S/0.78E 0.60 2 0.86 0.34 59.62 0.90 0.05 0.55
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Fig. 8 Trend of observed and predicted activities for the training and
test set using CoMSIA based model (CoMSIA9)
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are still a limiting factor for the broad application of QM in
drug design. To overcome these limitations, and in order to
account for steric and bulk interactions, we used the well-
established CoMFA and CoMSIA methods.

Conclusions

There continues to be some debate surrounding bioactive
conformers. In ligand-based design, the lowest energy con-
former has often been considered as the most bioactive
conformer: however, in structure-based design, molecular
docking remains the ultimate choice. Here, we find that the
low energy conformer provided a better description of the
electronic and electrostatic interaction but that steric and van
der Waals interactions remained poorly defined in such
studies. A combined approach using steric and electrostatic
interactions gave more insight. The slight variation in the
conformation might perturb the electron density distribution
and electrostatic potential, which might lead to a different
interaction. Comparing ligand interaction energy is helpful
in identifying bioactive conformers among different confor-
mational samples. The low energy and high hardness based
conformer is thought to be the bioactive conformer. In spite
of a good statistical relationship we cannot overlook the
contribution of other interactions; deep analyses and con-
sideration of steric interactions supports docking-based
conformers.

CoMFA and CoMSIA indicated that bulkier and/or pos-
itive groups around the indazole group and a small group
around the SO2 group of isothiazolidine will be helpful for
better activity of CDK2 inhibitors. Finally, we conclude that
more sophisticated techniques such as DFT-based electronic
energy calculations, QM/MM and molecular dynamics have
limitations. There is a need to account for the various kinds
of interactions to access biological activities in computa-
tional drug design.
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